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We address the issue of whether amplification, like absorption, suppresses wave transmission at large gain,
as has been claimed in previous studies of wave propagation in active random media. A closer examination
reveals that the paradoxical symmetry between absorption and amplification is an artifact of unphysical solu-
tions from the time-independent wave equation. Solutions from the time-dependent equation demonstrate
clearly that when gain is above the threshold, the amplitude of both the transmitted and the reflected wave
actually increases with time, apparently without bound. The implications of the current finding is discussed.
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Recent observations1 of laserlike emission from dye solu
tion immersed with TiO2 nanoparticles have stimulated in
tensive theoretical efforts2–13 to investigate the properties o
disordered media which are optically active. With enhanc
optical paths from multiple scattering, random systems
expected to possess a reduced gain threshold for lasing14,15

Correspondingly, one would expect the transmission in d
ordered systems to be enhanced with gain. Surprisin
transfer matrix calculations3,4 based on time-independen
wave equations showed that for large systems the w
propagation is actually suppressed with gain, leading to
hanced localization16,17 of waves as if the system is absor
ing. Subsequently a more rigorous proof5 for such a symme-
try between absorption and amplification was presented
the time-independent wave equation.

Intuitively one would expect that the presence of ampl
cation should facilitate wave propagation, not suppress
even in disordered systems. At least in the weak scatte
~diffusive! regime, amplification always enhances wa
transmission.2,14,15,18The time-dependent diffusion equatio
predicts an increased output and a gain threshold ab
which the system become unstable.14,15,18The diffusive de-
scription of photon transport in gain media neglects
phase coherence of the wave. Thus it was generally belie
that the paradoxical phenomenon may indicate enhance
calization due to interference of coherently amplified mu
ply reflected waves.3–6,8,10,11,13However, amplification of
PRB 590163-1829/99/59~14!/9007~4!/$15.00
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backscattering does not necessarily imply a reduction
transmission because no conservation of the total photon
is required in gain media. With sufficient gain, wave shou
be able to overcome losses from backscattering and pr
gate through the system with increased intensity. To fu
understand the origin of this apparent nonintuitive suppr
sion of transmission, we will examine the validity of th
solutions derived from the time-independent wave equa
which has been commonly employed in describing the w
propagation in active media.

Linearized time-independent wave equations with a co
plex dielectric constant have been successfully utilized
find lasing modes by locating the poles19 in the complex
frequency plane and to investigate the spontaneous emis
noise below the lasing threshold in distributed feedba
semiconductor lasers.20,21 Such equations are known to b
inadequate19,20 to describe the actual lasing phenomena d
to their simplicity in dealing with the interactions betwee
radiation and matter. However, it is generally believed t
the time-independent equation should suffice to describe
wave propagation in amplifying media, before any oscil
tions occur. We will unambiguously show that the so-call
symmetry4,5 between amplification and absorption is an ar
fact due to the unphysical assumption of a finite output
solving the time-independent wave equations, when such
lutions cease to exist at large lengths or large gain. We
show that for each system, there is a frequency-depen
R9007 ©1999 The American Physical Society
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gain threshold above which no stable time-independent
put exists. Solving the time-independent wave equations
incorrectly assuming a fixed output leads to unphysical so
tions that do not correspond to the true behavior of the s
tem. These conclusions are supported by numerical solut
of the time-dependent wave equation with a semi-infin
plane wave incident upon a linearly amplifying media.

To see how the unphysical solution could arise from
time-independent equation, we take the simplest exampl
wave propagation through a uniform active media–the c
sical Fabry-Pe´rot setup with the two interfaces acting a
feedback mirrors~see the inset in Fig. 1!. The time-
independent wave solution must satisfy the wave equatio

d2E~z!

dz2 1
v2

c2 «~z!E~z!50, ~1!

where E(z) is the electric field and the dielectric consta
«(z)5«8(z)2 i«9(z) is complex with the imaginary par
signifying amplification from stimulated emission of radi
tion («9.0) or absorption («9,0). Here we have assume
a constant«9 independent of field intensity to represent
uniform linearly amplifying media. We also comment that
electromagnetic theory, the imaginary part of the dielec
constant is proportional to the conductivity of the mater
and thus cannot be negative. The negative dielectric cons
is strictly speaking only a phenomenological way to intr
duce coherent amplification.22 Complex potentials known a
optical potential have long been employed in nuclear phy
to describe inelastic nuclei scattering processes.23

For time-independent solutions, the field inside and o
side the media are plane waves, with amplitude given a
the inset of Fig. 1. The transmission and the reflection a
plitude can be easily obtained by matching the bound
conditions at the two interfaces, with the final expression

t5
t1t2eikL

12r 1r 2e2ikL , ~2!

where t152k/(k1k0), t252k0 /(k1k0), and r 15r 25(k
2k0)/(k1k0) are the effective transmission and reflecti

FIG. 1. The logarithm of the transmission coefficient, ln(T), ver-
sus the lengthL of a simple Fabry-Pe´rot setup. The dielectric con
stant of the Fabry-Pe´rot device is«5«82 i«9522 i0.01. The di-
electric constant of the outside medium is«51 without gain. In the
inset a schematic representation for the wave transmission
simple Fabry-Pe´rot setup is shown.
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coefficients at the left and right two interfaces~mirrors!, re-
spectively.k05A«02p/l and k5k82 ik95A«82 i«92p/l
are the wave vectors outside and inside the system, res
tively. L is the distance between the ‘‘mirrors.’’

The oscillation condition for lasing is correctly given b
12r 1r 2e2ikL50 at which both the transmission and refle
tion coefficient diverge. However, Eq.~2! also predicts the
exponential decrease of the transmission amplitude for la
system sizes, asymptotically as utu;uexp(2ikL)u
5exp(2k9L). This is clearly shown in Fig. 1, where we plo
ln(T) versusL. Notice that for largeL, ln(T) decreases asL
increases despite the fact that the system has gain. Gai
fectively becomes loss at large lengths. Remember the
tem is homogeneous, thus disorder is definitely not resp
sible for this strange behavior. We see that the inhibition
wave transmission for large systems is clearly not unique
disordered systems7 and could not possibly come from th
amplification of backscattering.

A more illuminating picture of what is going on can b
obtained from the path integral method.19 In such an ap-
proach, the total transmission coefficient can be obtained
adding coherent contributions from all paths of successiv
reflected and transmitted rays. We obtain a sum of geom
cal series,

t5t1t2eikL@11~r 1r 2e2ikL!1~r 1r 2e2ikL!21¯#. ~3!

The first term represents the direct transmission of the
coming wave, and the second term represents the w
which was reflected first byr 2 at the right interface and the
by r 1 at the left interface and subsequently transmit
through~see inset of Fig. 1!. More terms from sequences o
multiple transmissions and reflections at the left and ri
‘‘mirrors’’ follow. Eq. ~3! can be interpreted physically a
the output at long times when a continuous plane wave
incident upon the system.

It is a simple matter to verify that Eq.~3! indeed repro-
duces Eq.~2!, provided that the following condition is met

ur 1r 2e2ik8Le2k9Lu,1. ~4!

When the condition given by Eq.~4! is violated, such as
when the system size or the gain is large, the output re
sented by the sum fail to converge, indicating physically
absence of a stable time-independent solution.

The divergence of the transmission above threshold e
away from the oscillation pole is the key in understandi
the failure of Eq.~2!, which is conventionally derived from
boundary-condition matching by implicitly assuming that t
output is always finite. Normally the physical boundary co
dition is satisfied whent1t2eikL1r 1r 2e2ikLt5t, resulting in
Eq. ~2!. Obviously this condition ceases to be meaning
when t is not finite or ill defined. Consequently, Eq.~2!
ceases to represent the physical output. In contrast the
dition given by Eq.~4! is always satisfied for lossy media
The nonconvergence of output is a unique phenomenon
curring only to systems with gain. The breakdown of t
time-independent wave equation at large gain or large s
tem sizes signals the large fluctuations of the transmissio
time and calls for more sophisticated theories that can t
into account in more detail the interaction between radiat
and matter to correctly describe the response of the syst
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To support our picture, we have studied the transmiss
problem of the simple Fabry-Pe´rot system directly by solv-
ing numerically the time-dependent equation w
a well-developed finite-difference-time-domain~FDTD!
technique.24 A semi-infinite planewave of a fixed frequenc
is incident upon the system from the left. Absorbing boun
ary conditions have been applied on both ends to elimin
the reflection at the boundaries. We choosel5800 nm and
L54300 nm. The dielectric constant outside is taken to
«051 and the real part of the dielectric constant of the act
media is«59. Both mirrors have been chosen to be refle
tionless for simplicity~the interfaces provide feedback!. For
this system, the threshold gain is calculated to be«950.12
from Eq. ~4!. In Fig. 2, we show the field amplitude imme
diately outside of the active medium as a function of tim
for different values of amplification~and absorption!. The
time unit t0 here is the round trip time of the light within th
media. We expect after some transient time, the transm
wave should converge to the solution@Eq. ~2!# predicted by
the time-independent equation. This is indeed what happ
when the gain is below the threshold. However, when
gain is above the threshold, the output field appears to
crease with time exponentially without bound, indicating t
nonexistence of a stable time-independent solution un
these conditions.

We have also performed similar calculations on a rand
system consisting of 50 cells of binary layers with«05«1
51 and«2542 i«9. Within the unit cell the thickness of th
first layer is a random variablean5a0(11Wg) where a0
595 nm. W50.8 and g is a random value in the rang
@20.5, 0.5#. The cell length is fixed to be 215 nm. The wav
length of the incident wave isl51200 nm. The results ar
shown in Fig. 3. Again we see the output field strength
creases with time without any bound once the gain reac
some value. This threshold depends not only on freque
but also on disorder configuration of the sample. Figur

FIG. 2. The logarithm of output at the right side of syste
versus time of a Fabry-Pe´rot setup with a plane-wave (l
5800 nm) incidence. The length of system is theL54300 nm and
the dielectric constants of the inside and outside materials ar«1

592 i«9 and«151, respectively. The time unitt0 is the round trip
time for the wave to travel through the medium. The critical gain
the system is«c950.12.
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clearly shows the output always increases with gain for
same input and there is no sign of the suppression of tra
mission, even in random systems.

These numerical solutions demonstrate unambiguou
that for a linearly amplifying medium, there is a frequenc
dependent and sample-specific gain threshold above w
no physical time-independent solution exists. Solutions fr
the time-independent equation are valid only below
threshold. This threshold decreases with increasing sys
size. Unfortunately it is difficult to determine this thresho
without explicitly solving the time-dependent equation. O
certainly cannot tell from the expression of the total tran
mission coefficient itself since it is well behaved except e
actly at the discrete oscillation poles. One method is to
vide the whole system into smaller subsystems and t
apply the geometrical sum of multiple reflections and tra
mission technique, as we have done for the Fabry-P´rot
setup, to each subsystem to find the threshold curve for
subsystem. Then the locus formed by all the possible s
systems will be the threshold curve for the whole syste
However, this strategy is practical only to simple systems
is very difficult to carry out such analysis for large or diso
dered systems. However, since the oscillation poles for
lasing threshold are still correctly given by the divergence
the transmission coefficients from the time-independent
lutions, an estimate of the magnitude of the threshold
frequencies away from the pole can be obtained from
threshold values of nearby lasing poles. A study of the d
tribution of these poles has been carried out for a rand
layer system by carefully locating the pole position by co
tinuously tuning the gain up at a fixed frequency until t
transmission coefficient from the time-independent equa
diverges.9

The implication of our analysis is that the calculation
transmission and reflection coefficient with the tradition
method from time-independent equations become sus

f

FIG. 3. The logarithm of output at the right side of syste
versus time of a random system with a plane-wave (l51200 nm)
incidence. The system consists of 50 cells of binary dielectric me
with «151 and«2542 i«9, respectively. The cell length is fixed a
215 nm and the length of the first medium is given byan5a0(1
1Wg), where a0595 nm, W50.8, andg is a random number
between20.5 and 0.5. The time unitt0 is the round trip time for
the wave to travel through the system.
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once the gain or system size reaches a certain value. Car
to be taken to ensure that the system is not above the thr
old and that the solution is physical. This remark not on
applies to studies with transfer matrix4–8,10,12,13but also per-
tains to the application of the powerfulinvariant embedding
method25 which has been widely employed in th
studies3,6,8,11of transmission problem in random gain med
The presence of a stable time-independent solution is imp
itly assumed in these approaches. Consequently, the co
sions of previous studies3,4,6,8,10,11,13on the statistical proper
ties of the transmission and reflection coefficient need to
reevaluated in light of the current finding.

In summary, we show that amplification does not su
press wave transmission, as has been claimed previousl
random active media. On the contrary, it always enhan
wave propagation. Numerical solution to the time-depend
equation show when the system size~or gain! reaches a
frequency- and configuration-dependent threshold, both
amplitude of the reflected and the transmitted wave from
continuous input increases with time without any bound. T
erroneous conclusions reached in precious studies wa
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artifact of the failure of the output wave to converge to
finite value, which must be assumed in any solutions of
time-independent equation. In light of the current finding
some of the conclusions on the statistical properties of
reflection and the transmission coefficient in media with g
become suspect, especially at large system sizes. The t
independent equation is inadequate to describe the am
cation of light under these conditions. Nevertheless, the s
plicity of the time-independent equation can still be us
effectively to locate resonant conditions, even in disorde
systems. A complete treatment of the wave propagation
gain media may require the construction of the tim
dependent solution out of the continuous and discrete s
tions of the time-independent equation.26 Unlike for the Her-
mitian system, the completeness of these solutions could
be proved easily when the potential is complex.
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